References¶
P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 1997. doi:10.1137/S0097539795293172.
D. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Raymond, A. Simonetto, S. Woerner, and E. Yndurain. Quantum Computing for Finance: State-of-the-Art and Future Prospects. IEEE Transactions on Quantum Engineering, 2020. doi:10.1109/TQE.2020.3030314.
S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan. Quantum computational chemistry. Reviews of Modern Physics, 92(1):015003, 2020. doi:10.1103/RevModPhys.92.015003.
H.-Y. Huang, R. Kueng, G. Torlai, V. V. Albert, and J. Preskill. Provably efficient machine learning for quantum many-body problems. Science, 377(6613):eabk3333, 2022. doi:10.1126/science.abk3333.
S. Harwood, C. Gambella, D. Trenev, A. Simonetto, D. Bernal Neira, and D. Greenberg. Formulating and solving routing problems on quantum computers. IEEE Transactions on Quantum Engineering, 2:1–17, 2021. doi:10.1109/TQE.2021.3049230.
N. Quetschlich, L. Burgholzer, and R. Wille. Towards an Automated Framework for Realizing Quantum Computing Solutions. In Int'l Symp. on Multi-Valued Logic. 2023. arXiv:2210.14928, doi:10.1109/ISMVL57333.2023.00035.
N. Quetschlich, V. Koch, L. Burgholzer, and R. Wille. A hybrid classical quantum computing approach to the satellite mission planning problem. In Int'l Conf. on Quantum Computing and Engineering, volume 01, 642–647. 2023. doi:10.1109/QCE57702.2023.00079.
N. Quetschlich, L. Burgholzer, and R. Wille. Predicting Good Quantum Circuit Compilation Options. In Int'l Conf. on Quantum Software. 2023. arXiv:2210.08027, doi:10.1109/QSW59989.2023.00015.
N. Quetschlich, M. Soeken, P. Murali, and R. Wille. Utilizing resource estimation for the development of quantum computing applications. 2024. arXiv:2402.12434.
N. Quetschlich, F. J. Kiwit, M. A. Wolf, C. A. Riofrio, L. Burgholzer, A. Luckow, and R. Wille. Towards application-aware quantum circuit compilation. 2024. arXiv:2404.12433.
N. Quetschlich, L. Burgholzer, and R. Wille. MQT Predictor: Automatic device selection with device-specific circuit compilation for quantum computing. 2023. arXiv:2310.06889.
A. Zulehner and R. Wille. Advanced simulation of quantum computations. IEEE Trans. on CAD of Integrated Circuits and Systems, 2019. doi:10.1109/TCAD.2018.2834427.
A. Zulehner and R. Wille. Matrix-Vector vs. Matrix-Matrix multiplication: Potential in DD-based simulation of quantum computations. In Design, Automation and Test in Europe. 2019. doi:10.23919/DATE.2019.8714836.
S. Hillmich, I. L. Markov, and R. Wille. Just like the real thing: Fast weak simulation of quantum computation. In Design Automation Conf. 2020. doi:10.1109/DAC18072.2020.9218555.
S. Hillmich, R. Kueng, I. L. Markov, and R. Wille. As accurate as needed, as efficient as possible: Approximations in DD-based quantum circuit simulation. In Design, Automation and Test in Europe. 2020. doi:10.23919/DATE51398.2021.9474034.
S. Hillmich, A. Zulehner, R. Kueng, I. L. Markov, and R. Wille. Approximating decision diagrams for quantum circuit simulation. ACM Transactions on Quantum Computing, 3(4):1–21, 2022. doi:10.1145/3530776.
T. Grurl, J. Fuß, and R. Wille. Considering decoherence errors in the simulation of quantum circuits using decision diagrams. In Int'l Conf. on CAD. 2020. doi:10.1145/3400302.3415622.
T. Grurl, R. Kueng, J. Fuß, and R. Wille. Stochastic quantum circuit simulation using decision diagrams. In Design, Automation and Test in Europe. 2021. doi:10.23919/DATE51398.2021.9474135.
T. Grurl, J. Fuß, and R. Wille. Noise-aware quantum circuit simulation with decision diagrams. IEEE Trans. on CAD of Integrated Circuits and Systems, 42(3):860–873, 2023. doi:10.1109/TCAD.2022.3182628.
L. Burgholzer, H. Bauer, and R. Wille. Hybrid Schrödinger-Feynman simulation of quantum circuits with decision diagrams. In Int'l Conf. on Quantum Computing and Engineering. 2021. doi:10.1109/QCE52317.2021.00037.
A. Sander, L. Burgholzer, and R. Wille. Towards hamiltonian simulation with decision diagrams. In Int'l Conf. on Quantum Computing and Engineering. 2023. arXiv:2305.02337, doi:10.1109/QCE57702.2023.00039.
K. Mato, S. Hillmich, and R. Wille. Mixed-dimensional quantum circuit simulation with decision diagrams. In Int'l Conf. on Quantum Computing and Engineering. 2023. arXiv:2308.12332, doi:10.1109/QCE57702.2023.00112.
S. Hillmich, A. Zulehner, and R. Wille. Concurrency in DD-based quantum circuit simulation. In Asia and South Pacific Design Automation Conf. 2020. doi:10.1109/ASP-DAC47756.2020.9045711.
L. Burgholzer, A. Ploier, and R. Wille. Exploiting arbitrary paths for the simulation of quantum circuits with decision diagrams. In Design, Automation and Test in Europe. 2022. doi:10.23919/DATE54114.2022.9774631.
L. Burgholzer, A. Ploier, and R. Wille. Simulation paths for quantum circuit simulation with decision diagrams: What to learn from tensor networks, and what not. IEEE Trans. on CAD of Integrated Circuits and Systems, 2022. arXiv:2203.00703, doi:10.1109/TCAD.2022.3197969.
L. Burgholzer, R. Raymond, I. Sengupta, and R. Wille. Efficient construction of functional representations for quantum algorithms. In Int'l Conf. of Reversible Computation. 2021. doi:10.1007/978-3-030-79837-6_14.
A. Zulehner, A. Paler, and R. Wille. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. on CAD of Integrated Circuits and Systems, 2019. doi:10.1109/TCAD.2018.2846658.
S. Hillmich, A. Zulehner, and R. Wille. Exploiting Quantum Teleportation in Quantum Circuit Mapping. In Asia and South Pacific Design Automation Conf., 792–797. 2021. doi:10.1145/3394885.3431604.
A. Zulehner and R. Wille. Compiling SU(4) quantum circuits to IBM QX architectures. In Asia and South Pacific Design Automation Conf., 185–190. 2019. doi:10.1145/3287624.3287704.
R. Wille, L. Burgholzer, and A. Zulehner. Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and H operations. In Design Automation Conf. 2019. doi:10.1145/3316781.3317859.
R. Wille, S. Hillmich, and L. Burgholzer. Efficient and correct compilation of quantum circuits. In IEEE International Symposium on Circuits and Systems. 2020. doi:10.1109/ISCAS45731.2020.9180791.
L. Burgholzer, S. Schneider, and R. Wille. Limiting the search space in optimal quantum circuit mapping. In Asia and South Pacific Design Automation Conf. 2022. doi:10.1109/ASP-DAC52403.2022.9712555.
T. Peham, N. Brandl, R. Kueng, R. Wille, and L. Burgholzer. Depth-optimal synthesis of Clifford circuits with SAT solvers. In Int'l Conf. on Quantum Computing and Engineering. 2023. arXiv:2305.01674, doi:10.1109/QCE57702.2023.00095.
S. Schneider, L. Burgholzer, and R. Wille. A SAT encoding for optimal Clifford circuit synthesis. In Asia and South Pacific Design Automation Conf. 2023. doi:10.1145/3566097.3567929.
T. Peham, L. Burgholzer, and R. Wille. On Optimal Subarchitectures for Quantum Circuit Mapping. ACM Transactions on Quantum Computing, 2023. arXiv:2210.09321, doi:10.1145/3593594.
N. Quetschlich, L. Burgholzer, and R. Wille. Compiler Optimization for Quantum Computing Using Reinforcement Learning. In Design Automation Conf. 2023. arXiv:2212.04508, doi:10.1109/DAC56929.2023.10248002.
N. Quetschlich, L. Burgholzer, and R. Wille. Reducing the compilation time of quantum circuits using pre-compilation on the gate level. In Int'l Conf. on Quantum Computing and Engineering. 2023. arXiv:2305.04941, doi:10.1109/QCE57702.2023.00091.
D. Schoenberger, S. Hillmich, M. Brandl, and R. Wille. Using Boolean Satisfiability for Exact Shuttling in Trapped-Ion Quantum Computers. In Asia and South Pacific Design Automation Conf. 2024. doi:10.1109/ASP-DAC58780.2024.10473902.
D. Schoenberger, S. Hillmich, M. Brandl, and R. Wille. Towards Cycle-based Shuttling for Trapped-Ion Quantum Computers. In Design, Automation and Test in Europe. 2024.
D. Schoenberger, S. Hillmich, M. Brandl, and R. Wille. Shuttling for Scalable Trapped-Ion Quantum Computers. 2024. arXiv:2402.14065.
L. Schmid, S. Park, and R. Wille. Hybrid Circuit Mapping: Leveraging the Full Spectrum of Computational Capabilities of Neutral Atom Quantum Computers. In Design Automation Conf. 2024.
L. Schmid, D. Locher, M. Rispler, S. Blatt, J. Zeiher, M. Müller, and R. Wille. Computational Capabilities and Compiler Development for Neutral Atom Quantum Processors - Connecting Tool Developers and Hardware Experts. Quantum Science and Technology, 2024. doi:10.1088/2058-9565/ad33ac.
K. Mato, M. Ringbauer, S. Hillmich, and R. Wille. Adaptive compilation of multi-level quantum operations. In Int'l Conf. on Quantum Computing and Engineering, 484–491. 2022. doi:10.1109/QCE53715.2022.00070.
K. Mato, M. Ringbauer, S. Hillmich, and R. Wille. Compilation of entangling gates for high-dimensional quantum systems. In Asia and South Pacific Design Automation Conf., 202–208. 2023. doi:10.1145/3566097.3567930.
K. Mato, S. Hillmich, and R. Wille. Compression of qubit circuits: Mapping to mixed-dimensional quantum systems. In Int'l Conf. on Quantum Software, 155–161. 2023. doi:10.1109/QSW59989.2023.00027.
K. Mato, S. Hillmich, and R. Wille. Mixed-dimensional qudit state preparation using edge-weighted decision diagrams. In Design Automation Conf. 2024.
T. Grurl, C. Pichler, J. Fuß, and R. Wille. Automatic Implementation and Evaluation of Error-Correcting Codes for Quantum Computing: An Open-Source Framework for Quantum Error Correction. In VLSI Design, 301–306. 2023. doi:10.1109/VLSID57277.2023.00068.
L. Burgholzer and R. Wille. Advanced equivalence checking for quantum circuits. IEEE Trans. on CAD of Integrated Circuits and Systems, 2021. doi:10.1109/TCAD.2020.3032630.
L. Burgholzer and R. Wille. Improved DD-based equivalence checking of quantum circuits. In Asia and South Pacific Design Automation Conf. 2020. doi:10.1109/ASP-DAC47756.2020.9045153.
L. Burgholzer and R. Wille. The power of simulation for equivalence checking in quantum computing. In Design Automation Conf. 2020. doi:10.1109/DAC18072.2020.9218563.
L. Burgholzer, R. Kueng, and R. Wille. Random stimuli generation for the verification of quantum circuits. In Asia and South Pacific Design Automation Conf. 2021. doi:10.1145/3394885.3431590.
L. Burgholzer, R. Raymond, and R. Wille. Verifying results of the IBM Qiskit quantum circuit compilation flow. In Int'l Conf. on Quantum Computing and Engineering. 2020. doi:10.1109/QCE49297.2020.00051.
T. Peham, L. Burgholzer, and R. Wille. Equivalence checking of parameterized quantum circuits: Verifying the compilation of variational quantum algorithms. In Asia and South Pacific Design Automation Conf. 2023. doi:10.1145/3566097.3567932.
T. Peham, L. Burgholzer, and R. Wille. Equivalence checking of quantum circuits with the ZX-Calculus. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022. doi:10.1109/JETCAS.2022.3202204.
T. Peham, L. Burgholzer, and R. Wille. Equivalence checking paradigms in quantum circuit design: A case study. In Design Automation Conf. 2022. doi:10.1145/3489517.3530480.
R. Wille and L. Burgholzer. Verification of Quantum Circuits. In A. Chattopadhyay, editor, Handbook of Computer Architecture, pages 1–28. Springer Nature Singapore, Singapore, 2022. doi:10.1007/978-981-15-6401-7_43-1.
L. Berent, L. Burgholzer, P.-J. H. S. Derks, J. Eisert, and R. Wille. Decoding quantum color codes with MaxSAT. 2023. arXiv:2303.14237.
L. Berent, L. Burgholzer, and R. Wille. Software tools for decoding quantum low-density parity check codes. In Asia and South Pacific Design Automation Conf. 2023. doi:10.1145/3566097.3567934.
A. Strikis and L. Berent. Quantum low-density parity-check codes for modular architectures. PRX Quantum, 4(2):020321, 2023. doi:10.1103/PRXQuantum.4.020321.
L. Berent, T. Hillmann, J. Eisert, R. Wille, and J. Roffe. Analog information decoding of bosonic quantum LDPC codes. 2023. arXiv:2311.01328.
J. Kunasaikaran, K. Mato, and R. Wille. A framework for the design and realization of alternative superconducting quantum architectures. In Int'l Symp. on Multi-Valued Logic. 2024.
R. Wille, S. Hillmich, and B. Lukas. Tools for quantum computing based on decision diagrams. ACM Transactions on Quantum Computing, 2022. doi:10.1145/3491246.
R. Wille, S. Hillmich, and L. Burgholzer. Decision Diagrams for Quantum Computing. In Design Automation of Quantum Computers. 2023. doi:10.1007/978-3-031-15699-1_1.
R. Wille, L. Burgholzer, and M. Artner. Visualizing decision diagrams for quantum computing. In Design, Automation and Test in Europe. 2021. doi:10.23919/DATE51398.2021.9474236.
J. van de Wetering. ZX-calculus for the working quantum computer scientist. 2020. arXiv:2012.13966.
R. Duncan, A. Kissinger, S. Perdrix, and J. van de Wetering. Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus. Quantum, 4:279, 2020. doi:10.22331/q-2020-06-04-279.
L. Berent, L. Burgholzer, and R. Wille. Towards a SAT encoding for quantum circuits: A journey from classical circuits to Clifford circuits and beyond. In International Conference on Theory and Applications of Satisfiability Testing. 2022. arXiv:2203.00698, doi:10.4230/LIPIcs.SAT.2022.18.
T. Häner and D. S. Steiger. 0.5 petabyte simulation of a 45-Qubit quantum circuit. In Int'l Conf. for High Performance Computing, Networking, Storage and Analysis. 2017. doi:10.1145/3126908.3126947.
J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii. Quantum computing simulator on a heterogenous HPC system. In Int'l Conf. on Computing Frontiers, 85–93. 2019. doi:10.1145/3310273.3323053.
T. Jones, A. Brown, I. Bush, and S. C. Benjamin. QuEST and high performance simulation of quantum computers. In Scientific Reports. 2018. doi:10.1038/s41598-019-47174-9.
G. G. Guerreschi, J. Hogaboam, F. Baruffa, and N. P. D. Sawaya. Intel Quantum Simulator: a cloud-ready high-performance simulator of quantum circuits. Quantum Science and Technology, 5(3):034007, 2020. doi:10.1088/2058-9565/ab8505.
X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev, and F. T. Chong. Full-state quantum circuit simulation by using data compression. In Int'l Conf. for High Performance Computing, Networking, Storage and Analysis. 2019. doi:10.1145/3295500.3356155.
I. L. Markov and \relax Yaoyun. Shi. Simulating quantum computation by contracting tensor networks. SIAM Journal on Computing, 38(3):963–981, 2008. doi:10.1137/050644756.
B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas, and S. Mandrà. A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware. npj Quantum Information, 2019. doi:10.1038/s41534-019-0196-1.
J. Brennan, M. Allalen, D. Brayford, K. Hanley, L. Iapichino, L. J. O'Riordan, M. Doyle, and N. Moran. Tensor Network Circuit Simulation at Exascale. In International Workshop on Quantum Computing Software (QCS), 20–26. IEEE, November 2021. doi:10.1109/QCS54837.2021.00006.
T. Vincent, L. J. O'Riordan, M. Andrenkov, J. Brown, N. Killoran, H. Qi, and I. Dhand. Jet: Fast quantum circuit simulations with parallel task-based tensor-network contraction. Quantum, 6:709, 2022. doi:10.22331/q-2022-05-09-709.
G. F. Viamontes, I. L. Markov, and J. P. Hayes. Improving gate-level simulation of quantum circuits. Quantum Information Processing, 2(5):347–380, 2003. doi:10.1023/B:QINP.0000022725.70000.4a.
A. Botea, A. Kishimoto, and R. Marinescu. On the complexity of quantum circuit compilation. In Int'l Symp. on Combinatorial Search. 2018. doi:10.1609/socs.v9i1.18463.
R. Drechsler. Advanced Formal Verification. Springer, 2004. doi:10.5555/1024203.
D. Janzing, P. Wocjan, and T. Beth. “Non-identity check” is QMA-complete. International Journal of Quantum Information, 03(03):463–473, 2005. doi:10.1142/S0219749905001067.
N. Quetschlich, L. Burgholzer, and R. Wille. MQT Bench: Benchmarking Software and Design Automation Tools for Quantum Computing. Quantum, 7:1062, 2023. doi:10.22331/q-2023-07-20-1062.